Sense of Number Visual Algebra Policy

Graphic Design by Dave codirey Compilled by the Sense of Number Maths Teain For sole use within Sense of Number Primary School.

"A pleture is worth 1000 wordst wanw-senseofinumber-coouk

Guide to using a. Visual Algebra Policy

The Sense of Number Visual Algebra Policy provides a visual interpretation of the progression required across the Primary school to help children meet the objectives found within Domain 10: Algebra in the new National Curriculum.

A school branded VAP is created by Dave Godfrey for individual schools when the school logo and school name are added to the footer of each slide.

Typical uses:
Classroom: The slides are printed out (e.g. A4) and the appropriate slides are displayed within each classroom for continual reference or on a working wall.
Teacher Reference: The slides are printed out (e.g. 9 slides per A4 page) and inserted in the teacher's planning folder.
Parents: The slides are used to communicate to parents the school"s approach to developing and teaching algebraic thinking.
Website: Selected slides from the VAP are inserted onto a school's maths webpages. (Please note: the VAP should not be made available for download.)

Visual Algebra Policy

1-4 Introduction Slides
5-8 General Algebra Slides

Pages	Code
$9-14$	AA
$15-23$	AB
$24-31$	AC
$32-37$	AD
$38-56$	AE
$57-69$	AF
$70-73$	AG
$74-92$	AH
$93-98$	AI
$99-103$	AJ

Years
FS=Y4
Y1-Y6
Y1-Y6
Y1-Y6 Abacus (patterns \& sequences)
Y1-Y6 Function Machines
Y4=Y6 Graphing Sequences
Y1=Y4 Balancing Stacks
Y1-Y6 Balancing Equations
Y4-Y6 Formulae
Y5-Y6 Algebra Word Problems

Section	Y 1	Y 2	Y 3	Y 4	Y 5	Y 6
A: PatterinS and Sequences	$9-11$	$11-15$				
B: Counting Sequences	$15-16$	$17-18$		$19-21$	$20-23$	
C: Number Shapes (P\&S)	24	25	26,27		$28-31$	
D: AbacuS (P\&S)	32		$33-35$		36,37	
E: Function Machines	38	$39-43$	$44-47$	$48-51$	52	$53-56$
F: Graphing SequenceS				57,58	$59-63$	$61-69$
G: Balancing Stacks	70	70,71	72	73		
H: Balancing Equations	$74-76$	77,78	79	79,80	$81-83$	$84-92$
I: Formulae				$93-95$	$\mathbf{9 6 - 9 8}$	
J: Algebra Word Problems					$\mathbf{9 9 - 1 0 3}$	

Seeing a Sequence

A: Count

B: Pattern

BBC BBG BBC B

C: Terms of Sequence

labeling the position of the greens

term

 county

		1			2			3			
1	2	3	4	5	6	7	8	9	10		
		3			6			9			

Equals Sign is a Bollance

四

Agebratic Notation

d $\div 2$

$d=2-d=2$

Letters in Algebra

Number of Eggs	e	12	24	36	$12 b$
Number of Full Boxes	b	1	2	3	$\frac{e}{12}$

In Algebra letters are variables!

AA: Pattems is Sequences

AA: Potterns a Sequences 1 What are the missing terms?

$5,10,15,20, \ldots, 45$,
$22,20, \ldots, 18,16, \ldots$,

$30,40, \ldots, 60,70, \ldots$

AA: Potterns \& Sequences 2a

 What are the missing terms?

 What are the missing terms?}

$37,39, \ldots, 43,45, \ldots$

180, 170, _, 150, 140, _,

AA: Patterns a Sequences 2b
 What are the missing terms?

$1,4,-,-13,16,-,-$

$5,9, \ldots, 17, \ldots, 25$,

$36,42, \ldots, 54,60, \ldots$,

AA: Potterns \& Sequences $3 \quad$ What are the missing terms?

1, 5, 9, 13, —. —. —.,

AA: Potterns a Sequences 3/4
 What are the missing terms?

$12,8,4,0, \ldots, \ldots, 12$, $5,3,1, \ldots, \ldots,-5,=7$,

$32,22,12,2, \ldots, \ldots$

$\underset{120}{\boldsymbol{1} 2} \mathbf{A}$: Counting Sequences

$\underset{12 b}{\mathrm{AB}}$: Counting Sequences "Who is going to say 100?"

$\underset{230}{A B}$: Counting Sequences

$\underset{2 / 3 b}{\mathbf{A B}}$: Counting Sequences $\underset{\text { whoi is ging }}{ }$

$\underset{\substack{3 / 4}}{A B}$: Counting Sequences

3	7	11	15	17	19	$?$

$\underset{4 / 50}{4 B}$: Counting Sequences

$\underset{4 / 55}{\text { AB: }}$ Counting Sequences

AB: Counting Sequences 5/6 "Who is going to say 24 ?"

"Who is
going to
say 39 ?

$y=4 x-2$								
x	1	2	3	4	5	6	7	8
y	2	6	10	14	18	22	?	?

$y=4 x-1$								
	1	2	3	4	5	6	7	8
y	3	7	11	15	17	19	$?$	$?$

AC: Number Shapes Sequences

AC: Number Shapes 3a

AC: Number Shapes

\mathbf{x}	1	2	3	4	5	6	7	8
\mathbf{y}	$\mathbf{1}$	5	9	13	17	21	$?$	$?$

20

Sense of Number Visual Algebra Policy

AD: Abacus 1/2

1	\rightarrow	3
2	\rightarrow	6
3	\rightarrow	9
4	\rightarrow	12
5	\rightarrow	15
6	\rightarrow	18

3
6
9
12
15
18
2
2

$\underset{3 / 40}{ } \mathbf{A D}:$ Abacus $y=3 x$

x	$x 3$	y
1	\rightarrow	3
2	\rightarrow	6
3	\rightarrow	9
4	\rightarrow	12
5	\rightarrow	15
6	\rightarrow	18

AD: Abacus

$y=3 x$

AD: Abacus 3/4c $y=3 x+1$

x	x^{3}	y	+1	y
1	\rightarrow	3	\rightarrow	4
2	\rightarrow	6	\rightarrow	7
3	\rightarrow	9	\rightarrow	10
4	\rightarrow	12	\rightarrow	13
5	\rightarrow	15	\rightarrow	16
6	\rightarrow	18	\rightarrow	19

AD: Abacus 5/6
 $y=3 x+1$

x	$x 3$	y	+1	y
1	\rightarrow	3	\longrightarrow	4
2	\rightarrow	6	\rightarrow	7
3	\rightarrow	9	\longrightarrow	10
4	\rightarrow	12	\rightarrow	13
5	\rightarrow	15	\rightarrow	16
6	\rightarrow	18	\longrightarrow	19

Sense of Number Visual Algebra Policy

AD: Abacus
 6

$$
y=2 x+7
$$

AE: Doubling Machines

${ }_{22}$ AE: Doubling Machines

AE: Function Machines 2b
 Numerical Order

AE: Function Machines 2c
 Numerical Order

AE: Function Machines 2d
 Numerical Order

AE: Function Machines 2e
 Numerical Order

AE: Function Machines 3a

 Numerical Order

 Numerical Order}

AE: Function Machines 3b

AE: Function Machines 3c
 Random

AE: Function Machines 3d

AE: Function Machines 4a
 Numerical Order

x	1	2	3	4	5	6	7	8	9	10
$x 4$	4	8	12	16	20	24	28	32	36	40
	6	10	14	18	22	26	30	34	38	42

AE: Function Machines 4b
 Numerical Order

AE: Function Machines $4 c$
 Random

02 Sense of Number Visual Algebra Policy

AE: Function Machines 2

AE: Function Machines

Guardian of the Rule

$\xrightarrow{\text { Maps onto }} \rightarrow$

AE: Function Machines

 6cGuardian of the Rule

AE: Function Machines

 6dGuardian of the Rule

$$
\begin{array}{ll}
\text { AF: Tines Tables sequenee } \\
\text { on © eraph }
\end{array}
$$

AF: Terms of a Sequence

First Term is
Step Size is
10th Term will be
100th Term will be \qquad

Hint:
Compare the sequence to the step size times-table

AF: Graphing a Sequence

g	\times	1	2	3	4	5	6	7	7
12	y	12	8	4	0	?	?	-12	12

Counting back in $\mathbf{4 ' s}^{\prime}$, starting at 12

Each term moves on 2!

AF: Terms of a Sequence

First
Term
Term

$\underset{56 f}{ } \mathbf{A F}$: Negative Sequence

Counting back in 2's, starting at 10

$y=-2 x+12$

AF: Graphing a Sequence

y	x	1	2	3	4			6	7	
12	y	12	8	4	0			?	-12	

Counting back in 4's, starting at 12 $y=-4 x+16$

AF: Connections 6d

x	1	2	3	4	5	6
y	3	6	9	12	15	18
y + 2	5	8	11	14		

x	$x 3$	y	+2	y
1	\rightarrow	3	\rightarrow	5
2	\rightarrow	6	\rightarrow	8
3	\rightarrow	9	\rightarrow	11
4	\rightarrow	12	\rightarrow	14
5	\rightarrow	15	\rightarrow	17
6	\rightarrow	18	\rightarrow	20

$$
y=m x+c
$$

If m is $0, c$ is $\mathbb{1}: \mathrm{y}=1$
If m is $\mathbb{1}, c$ is $\mathbb{1}: y \equiv x+1$
If m is $2, c$ is $\mathbb{1}: y=2 x+1$
m = gradient
c = y intercept, when
x is zero (zero term)

$$
y=m x+c
$$

If m is $\mathbb{1}, c$ is $0: y \equiv x$
If m is $\mathbb{1}, c$ is $\mathbb{1}: y \equiv x+1$
If m is $1, c$ is $2: y=x+2$

```
m = gradient
c = y intercept, when
\(x\) is zero (zero term)
```


AG: Balancing Stacks 1

Sense of Number Visual Allgebra Policy

AG: Balancing Stacks 1/2

AG: Balancing Stacks 3

AG: Balancing Stacks 4

AH: Balancing Equations 1a

AH: Balancing Equations
 1b

AH: Balancing Equations 1c

$\underset{20}{\mathbf{A}} \mathbf{H}$: Balancing Equations

AH: Balancing Equations 2b

$\underset{64}{\text { AH: Balancing Linear Eqns. }}$

AH: Balancing Equations

AH: Balancing Equations 3/4

AH: Balancing Equations 5a

$(10 \times \triangle)+4=80=$

AH: Balancing Equations 5b

$(20 \times \triangle)+30=90=(10 \times \square)$

AH: Balancing Equations 5c

$5 n+10=58=n$

AH: Balancing Linear Eqns. 6a

 Algebraic Notation

 Algebraic Notation}

$5 c \psi 4=4 c+12$ -4 5c
 $4 c$ C

$\underset{6 b}{\text { AH: Balancing Linear Eqns. }}$

02 Sense of Number Visual Algebra Policy

AH: Balancing Linear Eqns.

 $6 c$
Algebraic Notation

$$
\begin{aligned}
& 5 x+6=22+x \\
&-x \\
& 4 x+6=22 \\
&-6=16 \\
& 4 x=64 \\
& \div 4=4
\end{aligned}
$$

AF: Balancing Linear Egins.

AH: Balancing Linear Eqns.

 $6 e$
Algebraic Notation

$\underset{6 f}{\text { AH: Balancing Linear Eqns. }}$

$3 n=4=2 n+3$

AH: Balancing Linear Eqns. 6 g

 Algebraic Notation

 Algebraic Notation}
$5 e=3$
+3
$=3 e+5$

Al: Formulae (Perimeter) 4a

Al: Formulae (Perimeter) 4b

Al: Formulae (Area) | $b=$ bege |
| :---: |
| $h=h i j t$ |

5

Area of a Rectangle

 $=b \times h$
$b=6 \mathrm{~cm}$
$\mathrm{h}=8 \mathrm{~cm}$
Area of a Triangle $=\frac{1}{2} \times b \times h$

Area $=0.5 \times 6 \mathrm{~cm} \times 8 \mathrm{~cm}=24 \mathrm{~cm}^{2}$
Area $=6 \mathrm{~cm} \times 8 \mathrm{~cm}=48 \mathrm{~cm}^{2}$

Al: Formulae (General)

 5/6
$a+b$

Al: The Pi (π) you can't eat!

6

Π (Pi) is the ratio of a circle's circumference to it's diameter!
$\pi=\frac{\text { circumference }}{\text { diameter }}$

Circumference $=\mathbf{3 . 1 4 1 5 9 2 6 5 3 5 9 0} \times$ Diameter

diameter	diameter	diameter	
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0 . 1 4 . .}$

Area of a Circle $=\pi x\left\|^{\prime \prime}\right\|^{\prime \prime}=\pi r^{2}$
Circumference of a Circle $=\mathbf{2} \pi r^{r}=\boldsymbol{\pi} d$

$$
\text { radius }=\frac{1}{2} \times \text { diameter }
$$

AJ: Algebra Word Problems

 5/6aSuppose there are y sheep on a bus. At a bus stop n more sheep get on the bus.

How many sheep are now on the bus?

Answer: y + n

AJ: Algebra Word Problems 5/6b

 A plece of wood is $\mathbf{2 5} \mathbf{c m}$ long.
How much remains after II cut off a piece with length $x \mathrm{~cm}$?

Answer: 25 - x cm

$$
\frac{25 \mathrm{~cm}}{25-\mathrm{cm}}
$$

AJ: Algebra Word Problems 5/6c
A brick weighs w kg.
How much do six bricks weigh?
Answer: 6w

AJ: Algebra Word Problems 5/6d
A prize of x is shared equally between you and four others.

How much does each person recieve?

AJ: Algebra Problem Solving 5/6e 4 football teams werr in a lleague together", and played - each other once. How many fixtures were there?

Each team can't play themselves. Home and
Away fixtures for n
teams: $n x(n-\mathbb{D}) \equiv \mathbb{n}(n-\mathbb{D})$

Pages in Bin!

AA: Counting Sequences
2/3+ "Who is going to say 30?

$\underset{v_{2}}{\mathbf{A B}}$: Counting Sequences

AE: Function Machines 3b

AE: Function Machines

 6Guardian of the Rule

AE: Function Machines

Here's the Guardian's Rule!

AE: Function Machines

Guardian of the Rule
$2 \xrightarrow{\text { Maps onto }} \sqrt{\text { Maps onto }} \sqrt{5} \xrightarrow{\text { Map }}$

Here's the Guardian's Rule!

AG: Formulae (Area) \&

x

